
i.d. miller
6114 La Salle Ave Box 543

Oakland, CA 94611
http://idmiller.com

Implementing a Psychological Survey using Open
Source Software.1

http://iandennismiller.com/media/pdf/oss_survey(2008).pdf

© 2008 Ian Dennis Miller

Abstract
An online social psychological survey was implemented using a variety of Open
Source Software products. The specific technologies, the way in which they
were combined, and the challenges are discussed, as well as the requirements
that were fulfilled. The scientific results of this work, as well as other
methodological considerations, will be published with the following approximate
citation:
Page-Gould, Mendoza-Denton, and Tropp. “With a little help from my cross-
group friend.” Journal of Personality and Social Psychology. November, 2008.

1 The 2006 version of this paper is now deprecated, but it is available from the following
address - http://iandennismiller.com/media/pdf/oss_survey_deprecated(2006).pdf

http://idmiller.com/
http://idmiller.com/media/publications/oss_survey(2006).pdf
http://idmiller.com/media/publications/oss_survey(2006).pdf

Table of Contents
Introduction...3
Technologies...3

Hardware..4
GNU/Linux..5
Windows XP...6
Cygwin..6
Apache 1.3 web server...7
PostgreSQL..8
Perl 5.8..8
Web Browsers...9

Features..9
Data Tables and Recording Data..10
User Identification...11
Security and Privacy...12
Dynamic Elements..12
Loops and Forks/Skip Lists..13
Multiple Sessions and Obtaining Access...14
"Scales" versus "Pages"...15
Appearance: HTML and CSS...16

Conclusion..16

i.d. miller http://www.idmiller.com

Introduction
I was hired in July of 2003 to program an online survey for a longitudinal social
psychological experiment being conducted at the University of California at
Berkeley by Dr. Elizabeth Page-Gould, Professor Rodolfo Mendoza-Denton, and
Professor Linda R. Tropp. The timeline for the project was fairly compressed
and inflexible, and the available resources were scarce. Taken together, these
interesting constraints influenced the entire direction of the work towards Open
Source Software because:
• Open Source Software (OSS) is free on its surface; OSS is a tradeoff

between budgeting for labor and budgeting for commercial software
• commercial software is more difficult to modify internally (it is "closed source")
• commercial software is generally geared towards projects with high-

performance requirements, which was overkill in this case, to the extent that
the timeline might actually suffer for it

• I was personally familiar with the OSS offerings because my undergraduate
education favored OSS as a learning tool, because of the visibility of the
source code

This paper is organized into two sections: the features required by the project,
and the technologies used to implement those features. The technologies have
since improved, but the features that are fundamental to any survey are
orthogonal to the technologies that might implement them. In short, pencil and
paper (old technology) will still suffice, and can even benefit from the discussion
of survey features, but the technology currently available gently suggests that a
better approach exists.

Technologies
For the purposes of this discussion, technologies are both hardware and
software. From a planning perspective, a unit of technology is a “black box”
whose function is understood without necessarily understanding how it functions.
The automobile is a prototypical black box technology: I expect the car to stop
when I hit the brake, but I don't worry about how the anti-lock braking system
detects and reacts to road conditions.
Planning the software architecture of an on-line survey follows the pattern of
many web applications, which is frequently called Model-View-Controller (MVC).
The MVC pattern, applied to web applications, generally calls for the following
technologies: on the client computer is a web browser, and on the server
computer is a web server, a database server, and the application that controls it
all.
The term LAPP Platform (or LAMP) is commonly used in the Open Source web
application literature due to its relation to the MVC pattern, where LAPP stands
for Linux, Apache, PostgreSQL, and Perl. The LAPP platform of software
technologies, which will be described in detail, provide a web server, database

Implementing a Psychological Survey using Open Source Software p. 3

i.d. miller http://www.idmiller.com

server, and application programming language, all of which are open source. All
of these technologies are built on that most-general technology: the Intel x86
processor and the “generic PC.”
In discussing the technologies involved in this on-line survey project, I will work
from lowest level to highest, providing a peek at the insides of these “black box”
technologies as they related to the on-line survey project.

Hardware
I used two physical computers in this project: a development machine, which I
administered, and a production server, which was controlled by the lab that
performed the research. Hardware is still an issue for any lab or project, and it is
possible to create higher demands than your hardware can sustain.
Unfortunately, it is difficult to provide any rule-of-thumb in estimating hardware
requirements because it is depressingly easy to code inefficient web
applications.
Consider the following requirement: up to 8 users will simultaneously access a
database, each submitting approximately one page of data per minute, which
amounts to 8 pages per minute. This means that, on average, the survey must
be able to sustain one page every 7.5 seconds. For perspective, Amazon
manages tens of thousands of pages every 7.5 seconds, and this 8-person
survey only has to handle one page in that period of time.
In terms of hardware, of course, Amazon has thousands of computers, and you
might only have a single, generic PC from 1997. I'll go out on a limb and
conservatively estimate that the 1997 PC probably won't suffice for our 8-user
requirement, as meager a requirement as it might be. Also, keep in mind that
decade-old hardware suffers from other aging problems, too.
In practice, my hardware consisted of two machines for implementing this survey.
Here are the exact specifications:
i.d. miller “development” machine:
• Operating System: GNU/Linux
• Processor: Intel Xeon 1.8GHz P4 (2 processors)
• RAM: 1GB (512MB, 2 DIMMS)
• Hard Drive: 36GB SCSI 160
UC Berkeley “production” machine:
• Operating System: Windows XP SP2
• Processor: Intel P4 2.53GHz (1 processor)
• RAM: 512MB (1 DIMM)
• Hard Drive: 60GB ATA 100
The hardware was more than adequate for the needs of the survey. However,
such a setup had interesting consequences, not the least of which was the

Implementing a Psychological Survey using Open Source Software p. 4

i.d. miller http://www.idmiller.com

difference in operating system, which I will discuss in greater detail.
Assuming the hardware is utilized well by the software, I will venture some rule-
of-thumb estimates (anecdotally taken from personal experience) for the 8-user
survey:
• newer is better: Intel P2 400MHz is scraping by, Intel P3 800MHz is

comfortable, Intel P4 2.5GHz is quite comfortable.
• no matter the age of the computer, maximize RAM: 128MB is scraping by,

256MB will be adequate, and 512MB will be comfortable.

GNU/Linux
By now, the Linux kernel may need no introduction, as it appears in the media
with increasing frequency. Linux, or more specifically, GNU/Linux, is the
combination of the Linux kernel with a wide range of tools that approximate a
Unix environment. The kernel, as well as the GNU tools that make it usable, are
all Open Source products. The nature of the Linux kernel is to serve as an
interface to a computer's hardware, and in this case, the less exotic the
hardware, the better.
Hardware compatibility issues did pop up occasionally on the development
server, although this did not affect the project timeline. To illustrate, the Linux
kernel (in 2003) did not support certain error codes that were generated by the
processors in the development machine. Because the hard drive was physically
installed in such a way that it restricted airflow to the processors, the processor
temperature exceeded its threshold, and generated a “Machine Check
Exception” that the Linux kernel was unable to handle, which resulted in a very
nasty, sudden machine shutdown. The solution to this problem was twofold:
moving the hard drive to restore airflow, and waiting for the gradual update of the
Linux Kernel, which can now respond to temperature events by lowering the
processor speed.
The common criticism of GNU/Linux comes from the perspective of the desktop
user experience. This is largely irrelevant in the case of online web surveys. In
fact, considerable benefits come from not running a graphical desktop at all,
including better security, more predictable operation, and better utilization of
memory. The desktop argument aside, GNU/Linux supports a suite of common
server tools for making web applications: Apache, Perl, and Postgres, all of
which are discussed in detail.
GNU/Linux is an excellent operating system, but as the anecdote warns,
unexpected interactions and fringe operating conditions can result in serious
troubleshooting. In my experience, this is easily avoided by using mainstream,
modern hardware. GNU/Linux performs well as a dedicated server operating
system, and is a good platform for building web applications.
When people talk about Linux, they often discuss the wide variety of Linux
“distributions”, which are also referred to as flavors. To briefly comment on Linux
distributions, some are tailored to new users and others to experts, so it is worth
it to research before making a decision. During this project, I used Gentoo Linux,

Implementing a Psychological Survey using Open Source Software p. 5

i.d. miller http://www.idmiller.com

which is only appropriate for advanced users, but I currently use Ubuntu Linux,
which is much more accessible. I would recommend Ubuntu to OS X users (the
underlying operating system is quite similar), and I would even venture that the
switch for Windows XP users can be managed.
Back in the real world, labs can't often afford a technician who knows Linux, and
may not be lucky enough to have a volunteer with functional Linux administration
skills, either. Although practically all computers can run Linux, a measurable
expense manifests through the support of Linux. If “computer support” isn't
literally in the budget, it implicitly appears under other headings as “wasted time.”

Windows XP
Back in the real world, labs can't often afford a technician who knows Windows
XP, and may not be lucky enough to have a volunteer with functional Windows
XP administration skills, either. Although practically all computers can run
Windows XP, a measurable expense manifests through the support of Windows
XP. If “computer support” isn't literally in the budget, it implicitly appears under
other headings as “wasted time.”
In contrasting these two statements about “wasted time,” the difference is clear:
computers are difficult to use, and that value can be measured in terms of
support time. I assert that support time is partially a function of troubleshooting
knowledge and training. Windows XP (often called XP for short) is a monster to
learn, but it so happens that a lot of people in the academic world are reasonably
well-trained at XP. As a desktop operating system, it is easier to use than most
alternatives. Therefore, Windows XP is probably the most common operating
system used in academic labs, and that is the kind of computer you can expect
to find lying around.
In the case of the on-line survey project, one requirement was that the survey be
hosted on a machine running XP. This requirement is not too difficult to derive:
for the purposes of data security, the machine must be kept physically secure,
and the lab already had a locked room to store it in. Furthermore, without
budgeting for a dedicated machine, an existing machine would have to be
reused, and where else would that machine be but in the lab? Unfortunately,
from the Unix perspective, XP is not well suited to be a server operating system.

Cygwin
My preference is to develop for GNU/Linux, but the project required Windows XP.
I chose to bridge this gap using Cygwin, which is a Windows XP tool that
provides a similar experience to Linux. Cygwin also serves as a gateway into a
world of pre-compiled Linux applications that run within the Cygwin environment.
To relate this back to the LAPP platform, it is possible to swap out Linux for XP,
because Apache, Postgres, and Perl are all quite functional under XP with
Cygwin.
This level of functionality is provided for by competing Open Source projects, too,
such as Indigo Perl or XAMP. In the end, there is only one requirement: that the

Implementing a Psychological Survey using Open Source Software p. 6

i.d. miller http://www.idmiller.com

computer runs Apache, Postgres, and Perl. The Operating System is, in a
sense, secondary. However, committing to XP and Cygwin has its
consequences, both positive and negative.
On the negative, this means you must monitor yet another mailing list to watch
for Cygwin security updates, and you must act on them. On the positive side,
though, Cygwin really behaves like Linux in many ways, so remote system
administration becomes possible (via OpenSSH). Over the course of the
survey's lifespan, the need to remotely administer the web server will inevitably
arise, and fixing it faster is always better. It is a different process to remotely
administer Indigo Perl and XAMP, and I personally feel less comfortable with it.
A major difference between XP and Linux that Cygwin underscores is the
process for automatically launching an application at bootup. Also, Cygwin
appears less like Linux the deeper you dig, so depending on the requirements of
your web application, you may find major architectural differences that are
unexpectedly painful to code around.
For most on-line surveys, this won't be a problem, but consider the following: as
part of a data encryption scheme, I proposed using a certain algorithm that
depended upon a specific library of code containing exotic math functions. While
I could easily install these math functions on Linux, I ran into deep architectural
difficulty with Cygwin and XP. In short, a different encryption approach was
required because Cygwin wasn't similar enough.

Apache 1.3 web server
The Apache web server (often called just Apache) is a special Open Source
project. Beginning as just a web server, through the explosion of the Internet, the
project has blossomed into the Apache Foundation, which is an incubator for
dozens of other projects now, including significant technologies like the Apache
Tomcat server. The Apache Foundation is very alive as a community, and the
Apache web server appears to have a solid future ahead of it.
In building a web application, the web server manages the connection between a
client (who is generally using a web browser) and the web application (which, in
this case, is a survey program). Apache performs admirably in its web server
capacity by providing accelerated interfaces for many programming languages,
including PHP and Perl. In communicating with clients (including potentially
malicious clients), Apache has historically been quite secure, with infrequent but
timely security updates.
As with any web server, security will be a major issue. Principally, a web server
is software running on your machine that allows a remote user to control it. This
introduces all sorts of complications, and it becomes extremely important to limit
the actions a client can perform. Apart from your Hollywood-style “hacker”
scenario, in academic research, a potentially serious problem is exposing
sensitive data. Specifically, the layers of interaction in any moderately complex
web application potentially introduce new avenues for an information leak, which
means, for example, that a completely secure web application can be
undermined by an insecure web server configuration.

Implementing a Psychological Survey using Open Source Software p. 7

i.d. miller http://www.idmiller.com

The web server is among the most visible security components in an on-line
survey, but it is by no means the end of the story on security. In the same way
that a secure application is undermined by an insecure web browser, a secure
web browser is undermined by an insecure operating system. As far as the OS
is concerned, Apache installs on all flavors of Linux (or comes pre-installed). In
the case of XP, it is a mixed bag, but as was discussed before, Cygwin, XAMP,
and Indigo Perl all present options.

PostgreSQL
PostgreSQL is an opensource database server. While it faces fierce competition
from MySQL, a peer in the Open Source database arena, I have backed
PostgreSQL for several years due to a single advantage it alone possesses:
ACID compliance (which stands for Atomicity, Consistency, Isolation, and
Durability). Whereas MySQL can fall into a corrupted state, to be recovered later
by their recovery software, PostgreSQL will never enter such a state in the first
place. To accomplish this, PostgreSQL has historically showed slower
performance than MySQL, which is an important factor in the commercial sphere.
However, because the performance requirements were fairly modest, and the
cost of losing any data was immense, the decision to pick PostgreSQL over
MySQL seemed obvious. PostgreSQL installs easily enough using Cygwin, and
is generally simple to install under Linux, as well.
A number of unique factors affect the database aspect of an on-line survey. A
database server supports a finite number of simultaneous connections, but the
behavior of Apache is to hang on to connections longer than is necessary, which
can unnecessarily impact performance. It is also a non-trivial task to design a
functional database table for the needs of a given on-line survey.

Perl 5.8
Perl is a programming language. Syntactically, it is pretty similar to C++. In
execution, Perl is an interpreted language (as opposed to compiled). It is
modern, in the sense that it supports object orientation (ugly, but true) and it
provides memory management and garbage collection. Finally, Perl is very
social, perhaps unlike anything before it. Through CPAN (the Comprehensive
Perl Archive Network), a massive library of code is available for reuse. Although
it is at first difficult to reuse other people's code, the payoff is massive.
Returning to the LAPP platform, the final P stands for Perl. The acronym is
clever, but in practice, Perl can be swapped out for PHP, Python, Ruby, and any
number of other Open Source programming languages. Each language has its
fans and detractors, although in the web sphere, there is particularly high use of
PHP. Personally, I prefer to think of an MVC application in Perl terms, although
there have been projects to adapt MVC to PHP, for example.
As languages go, Perl has a notorious reputation for being ugly and illegible.
This is easily true, and just as easily false. From experience, I know that it is
possible to create elaborate byzantine structures and labyrinthine tangles of

Implementing a Psychological Survey using Open Source Software p. 8

i.d. miller http://www.idmiller.com

code, complex enough that they work but you have no idea how. Also, from
experience, I know that when your code is that complex, you ultimately have a
poorly organized understanding of the underlying concepts. I will confess that
the on-line web survey suffered from a touch of the labyrinth and deviated rather
far from the MVC pattern. These often go hand-in-hand.
Perl interacts very well with Apache and with PostgreSQL. In the case of
Apache, the mod_perl project provides the ability to directly integrate Perl code
into Apache, resulting in a massive performance payoff. PostgreSQL is
accessed from Perl through the DBI module, where Perl DBI can improve
performance again through mod_perl and Apache. In short, Perl is an excellent
language for coordinating web server and database server activities because it
integrates deeply with both.

Web Browsers
The web browser is generally the target of a web survey, or rather, it's the person
who is using the web browser. Part of the challenge is in ensuring that nothing
interferes with this process, so that everyone sees the same fundamental thing.
Of course, this is notoriously difficult.
Much of the difficulty started with the so-called “browser wars” of Netscape
Navigator versus Microsoft Internet Explorer. An international standards body,
the W3C (World Wide Web Consortium), established a series of specifications
for HTML (Hyper-Text Markup Language), upon which the so-called World Wide
Web has been built. Microsoft and Netscape both violated the standards,
creating a rift in the HTML language, and an endless nightmare of compatibility
problems for web designers as a whole, but for on-line survey engineers
specifically.
Adding to this mess is confusion about what, exactly, a web browser is capable
of. To answer the first question that comes up, millisecond-scale reaction times
are not possible to record using a stock browser. Experiments that purport to
record millisecond-scale reaction times must rely on Java applets, which can be
embedded in the browser, but which still cannot reliably guarantee such
accuracy.
Although it is difficult to consistently display web pages properly, and reaction
times cannot be recorded for an on-line survey, it is still possible to use the web
browser to collect certain, meaningful kinds of data.
Web browsers also play a key role in encrypting communication. By serving as
one endpoint in an SSL-encrypted channel (with the Apache server as the other
endpoint), the web browser helps to minimize the chances of third-party
eavesdropping.

Features
The vocabulary varies on this topic, ranging from ''requirements'' to ''features'' to
useful frameworks such as ''Use Cases'', but for the purposes of this paper,

Implementing a Psychological Survey using Open Source Software p. 9

i.d. miller http://www.idmiller.com

''Features'' are the things that the software accomplishes. The primary feature of
a minimally functional survey is that of data collection; participants enter data,
and the survey records it. For consistency in vocabulary with other work,
''participants'' are the same as the deprecated term, "subjects."

Data Tables and Recording Data
To accomplish the survey's primary objective, participants responses were
recorded in a database. There are two primary paradigms that will accomplish
this: the ''spreadsheet'', and the ''journal''. A spreadsheet contains a column for
each variable to be recorded and a row for each participant, and each data point
that is recorded is entered at the appropriate row/column coordinate in this
matrix. A journal, on the other hand, is a running list of each data point entered,
and it contains only four columns: the user identifier, a timestamp, the variable
name, and the recorded value of that variable.
Databases consist of a collection of tables, where each table consists of rows
and columns. Although this is similar to a spreadsheet on its surface, a database
requires a schema that will rigorously define the data that will be recorded in
each column. Whereas Microsoft Excel allows columns to be cut-and-pasted, a
database can only be altered by updating the table schema.
In the scientific survey world, a rigorous survey has a corresponding “data
dictionary” which will clearly identify the variables being recorded, the names of
those variables, and the type of data that is captured by each variable. This
corresponds directly with the database table schema, in the case that a
“spreadsheet” paradigm is used to organize the data.
The danger inherent in the spreadsheet paradigm is that changing survey
requirements will impact the schema. In this particular instance, the survey was
being altered at the same time that it was being implemented as a web
application, and each change would require the schema to be altered. Because
there were more than 1,000 variables, this task alone could be prohibitively time-
consuming.
The journal paradigm is one way to address the complication introduced by
rapidly-changing requirements. In this case, the table schema is trivially
composed of four columns, which again are the user identifier, a timestamp, the
variable name, and the recorded value of that variable. The variable name is not
part of the table schema, but is instead a data point contained within the table.
Because it is much easier to alter data than it is to alter the schema, the journal
can rapidly incorporate changes to the data dictionary without modifying the
schema. Also, because data points are individually recorded and timestamped,
this time information is available for analysis, and can be helpful for data
cleaning.
The primary danger to the journal paradigm is that there is no statistical software
package that can natively process such data. Therefore, the journal must be
transformed into its corresponding spreadsheet form, so that it can be imported
by the relevant software. This extra step is performed after all data has been

Implementing a Psychological Survey using Open Source Software p. 10

i.d. miller http://www.idmiller.com

collected, and can be referred to as “exporting” the data by reconstructing the
column headings and creating a comma-delimited or tab-delimited
representation.
The end result is that both paradigms will capture the same data in a manner that
is appropriate for statistical analysis. After using both methods on a variety of
other survey projects, I recommend the use of both, simultaneously, and if only
one is to be used, I recommend the spreadsheet paradigm. Ultimately, this
recommendation is based on the importance of keeping the database in sync
with the data dictionary, and for the purposes of rapidly verifying the the
database is actually recording the required variables. This requires the survey to
be completely designed before implementation begins.

User Identification
Each data point that is recorded must be associated with a unique user identifier
for the purpose of analysis. Each statistical hypothesis consists of dependent
and independent variables, where the user identifier is generally an independent
variable, and is therefore crucial to any statistical test.
For this survey, participants were assigned a unique numerical ID number that
would be theirs for the duration. This ID number is intended to separate the
identity of the participant from their associated data through the use of a one-way
table that maps IDs to actual identities. Theoretically, it should be impossible to
determine the identity of an individual's data without access to the one-way table.
There are a number of guidelines for creating these identifiers:
• IDs must be unique. If it is ever the case that two individuals are given the

same identifier, their data will be confused and potentially ruined.2

• IDs should be difficult to predict. Consider the case that the first user is
assigned ID #1, and the second user is assigned ID #2. A number of
malicious actions are now possible, ranging from using another user's ID to
reconstructing personal identifiers based on the sequence in which those
individuals participated in the survey.

• IDs should be sparse within the ID space. If you will have 100 users, and if
you allocate the numbers 0-99 for identifiers, then even if these numbers are
randomly assigned, it will be the case that a malicious user could easily
guess another ID since 100% of the ID space is filled. Better than IDs 0-99
would be 0-999, where only 100 numbers would be used out of the available
1,000. Here, only 10% of the ID space is used, and it would take 10x longer
to randomly guess a valid ID.

The topic of user identification will be raised later in this paper, because certain
practical constraints further influenced the theoretical concerns listed above.

2 It is possible to recover from this situation if a journal paradigm is used to record the data,
because timestamp data can be used to disambiguate between the individuals.

Implementing a Psychological Survey using Open Source Software p. 11

i.d. miller http://www.idmiller.com

Security and Privacy
A variety of sensitive and personally identifying data points were recorded in the
database over the course of this survey. One of the data points was a contact
email address, which would be used to follow up with participants if they
requested to receive a copy of the finished publication. Clearly, the existence of
this data point would allow anyone to immediately associate data with an identity,
due to the identifying nature of email.
The solution I employed was to use strong encryption, such that certain data
points would be impossible to read without access to the encryption key. In
retrospect, I do not recommend this because it added complexity to the project,
and I would instead suggest using a separate table whose only purpose was to
record email addresses. This table must not contain the user's ID or any other
item (e.g. timestamp) that could be used to associate data with an identity.
In some cases, strong encryption might be justified, but there are inherent risks.
The server must contain one copy of the encryption key, in order to perform
encryption on the data before archiving it. The principal investigator also has
access to this key, and can therefore decrypt the data. However, any
unauthorized access to the server can potentially compromise the key, so the
use of third-party encryption hardware is the best practice.

Dynamic Elements
Dynamic Elements are elements appearing in the survey that are determined at
run-time, or "on the fly." This may be driven by the condition the participant is
assigned to (randomly or otherwise), or by answers the participant previously
provided. In the case of this survey, both were the case: survey condition was
determined by the background of the participant, and the names of participants'
friends were reused a number of times throughout.
An example of a dynamic element is to create a survey item that contains a
"placeholder," which is blank until actually viewed by the participant. Upon
viewing, the placeholder is replaced with, for example, a word representing their
ethnicity, as in:
"Imagine you are out tea with a ______________ friend"
which becomes, depending on the condition:
"Imagine you are out to tea with a caucasian friend" (though this can just as
easily be "latino/latina" or any other scientifically indicated phrase).
Although it might appear trivial to accomplish this, consider the following
example, where a participant has previously indicated that their friend is named
Alfred:
"How close do you feel to ____________?"
which becomes:
"How close do you feel to Alfred?"

Implementing a Psychological Survey using Open Source Software p. 12

i.d. miller http://www.idmiller.com

In this case, the friend's name has been recorded in the database, so it must be
looked up in the database in order to be displayed. Depending on the volume of
concurrent users that the survey is actively communicating with at that moment,
the total number of entries in the database, and the design of the database, this
lookup to retrieve the name can take a non-negligible amount of time.
It is a matter of user experience that this retrieval time be minimized, because in
the extreme, this could potentially alter the experience of the participant in an
experimentally noisy manner. As the number of users increases, the delay might
increase, causing participants who take the survey later to experience a longer
delay than those who took it earlier.
The solution is to properly design the database with this in mind. Because this
was an issue of this survey's table design, a feature of Postgres called an ''index''
was used, which has the effect of pre-sorting the data tables based on a
particular field. Because users were uniquely identified by an integer, the table
was kept in a pre-sorted state on the basis of this identifying integer.
To take advantage of this, database entries were first filtered by user identifier,
which had the consequence of capping the total number of fields to be scanned
for the friend's name. This was verified by including the ''render time'' of a page
in special administrative debugging output, where render time is the amount of
time it takes the page to be displayed.

Loops and Forks/Skip Lists
Survey designers are accustomed to allowing for multiple paths through the
survey, based on participant responses. A common example comes from
television market research, whereby a phone survey ends immediately if the
individual does not own a television.
One requirement of this survey was to first prompt the participant for a list of their
friends, and then for each friend to ask certain questions. The challenge, then, is
to use the database for read/write access, to enable the survey to “look back” at
previous answers to figure out what to present to the user now.
A unique challenge faced by web-based surveys is the “statelessness” of the
HTTP protocol, which is the fundamental language of the world wide web3. This
stems from the fact that web browsers and servers communicate through bursts
of information. This can be contrasted with a phone call, where the line is kept
open for the duration of the conversation, and it can be assumed that as long as
the line is open, the same two people are talking. HTTP does not “remember”
anything about previous conversations, so it is unable to tell the web server that
a given communication logically follows a previous communication.
The implication for loops and skip lists is that the web application must include
additional logic to remember where the user is, within the survey. This was
accomplished indirectly, by continually visiting the database to read the list of
friends, and to determine how many friends have already been recorded. On this

3 Consider a typical web address such as http://www.google.com – here, http is explicitly indicated as the
protocol to use for communication.

Implementing a Psychological Survey using Open Source Software p. 13

http://www.google.com/

i.d. miller http://www.idmiller.com

basis, it was possible to conclude which name should be presented to the
participant. As was mentioned in the previous section about dynamic elements,
this technique creates significantly more work for the web server, because it must
repeatedly execute a query that may be fairly complicated.
Rather than using the data table to indirectly remember the user's location within
the survey, it is also possible to create an explicit “state table” that temporarily
stores the user's progress through the survey. This table can be crafted to
specifically hold “state information” such as the current page in the survey or the
list of the participant's friends. However, the risk in this approach is that the state
table may become out of sync with the data table, which could easily happen if
the participant uses the web browser's “back button” to return to a previous page.
Regardless of the technique used, it is essential to maintain such state
information in order to implement loops and skip lists within the survey.

Multiple Sessions and Obtaining Access
This longitudinal survey consisted of 15 sessions for each individual, which were
spread out across one month. This time-scale created a unique problem for the
user identifiers, because they would need to be used by multiple parties over a
long period of time. Participants would need to access this survey from the lab,
but also from their own homes, so a mechanism had to be devised for them to
obtain access to the survey.
To support these requirements, a login page protected access to the survey until
a valid ID was entered. Because participant apathy is a serious problem at UC
Berkeley, this system needed to be trivially simple, since it could not be assumed
that participants would make even a second attempt to log in. Ultimately, this
grotesque laziness would result in data loss, at great expense to the research.
An additional requirement was that participant need not know their unique ID –
this information would be managed by research assistants.
The survey was available from a URL that looked like
http://some.berkeley.server, and this URL would be emailed to participants over
the course of the month for their continued participation. To facilitate logging in
without ever knowing the ID, a special suffix was appended to the URL that
would bypass the login page by automatically entering the ID. A second suffix
was appended to the URL that would automatically bring the participant to the
appropriate survey, since there were many parts to this longitudinal design. A
final URL might look like http://some.berkeley.server?uid=XXX&survey=YYY.
This technique worked well enough, but as a cautionary tale, beware the
consequences of cut-and-paste. Essentially, this design would make every URL
unique, because a given user would only take a given survey once. Research
assistants were charged with creating these URLs and mailing them out to
participants, but unfortunately RAs did not always perform this task properly, and
instead simply cut-and-pasted the URL, thereby making it not unique. As a
result, participants took certain surveys multiple times.
Fortunately, for the cases that this happened in, the questions were identical

Implementing a Psychological Survey using Open Source Software p. 14

http://some.berkeley.server/
http://some.berkeley.server/

i.d. miller http://www.idmiller.com

from one survey to the next. The design of the survey required these particular
questions to be asked repeatedly over 10 days, so it was possible to recover
100% of the data by inspecting the data journal for its timestamps. By knowing
that answers were to fall within 24-hour windows, we re-assigned certain
answers to the correct survey.
Although the data journal saved the day, the best practice here is to create
software specifically for managing email. This would have removed the
responsibility for research assistants to create the proper URL, and it would have
assured that a properly generated URL was sent out each time.

"Scales" versus "Pages"
Survey research in general, and social psychological research in particular,
makes use of existing scales because they have already been validated. A
survey that has many pages might reuse a single scale several times, in different
contexts. There are two approaches to constructing the survey: on a per-page
basis, or on a per-scale basis.
The advantage to creating scales that are independent from pages is that the
scales can then be reused, by simply referencing them from different pages.
This can be accomplished by analyzing the various contexts in which a given
scale is used, and by generalizing the scale to remove any contextual elements.
Such contextual elements must then be provided by the page, so that the scale
is rendered in the proper context.
The task of generalizing scales boils down to identifying place-holders for the
words that will change, as in the dynamic elements section. For scales that only
appear once, this work is unnecessary. For scales that vary too wildly from one
context to the next, this work is likely to be more difficult than to simply create
multiple copies of the scale.
The advantage to using a per-page basis is that it minimizes the occurrence of
dynamic elements, thereby making it possible for the survey to be largely static.
The consequence is that the survey can be written in a static format, such as by
creating individual HTML pages that do not change. The disadvantage is that
very little can be reused, which might increase labor.
Consider the case that a single scale appears 12 times throughout the survey.
During development, it is determined that this scale is not implemented correctly.
The penalty for using a per-page basis is that this must be corrected in all 12
cases, and the possibility exists that small differences will sneak in during this
process.
The major disadvantage to the per-scale basis is the introduction of run-time
errors. When items are static, it is possible to review them and determine that
they are correct. Then, relying on the fact that it will not change, it will therefore
continue to be correct. When items are dynamic, then an unanticipated context
might cause these dynamic elements to render in unexpected ways. Such run-
time errors can only be uncovered through extensive testing, which can be time-
consuming.

Implementing a Psychological Survey using Open Source Software p. 15

i.d. miller http://www.idmiller.com

Appearance: HTML and CSS
Web-based surveys appear in web browsers, and must therefore be represented
using the language that browsers speak: HTML and CSS. As was discussed
before, these languages suffer from poor standards compliance by various
browser vendors. Therefore, it is important to use the most widely supported
components of the languages.
As an example, browsers are able to collect data from users through “forms” and
forms can be submitted by either “buttons” or “input submit” elements. Support
for the “button” method is less consistent that the “input submit” method, so
therefore the “button” method should be avoided.
Generally, the most trivial layout elements should be combined to create the
visual presentation that is desired. There is always more than one way to do it,
but it is frequently useful to favor the oldest available method.
It is also essential to perform extensive browser testing, because different
browser versions from the same vendor may behave differently. It is also not
safe to assume that all users will have the newest version of a given browser.
As of the time of this writing (July 2008) my recommendation is to verify your
HTML and CSS with the following browsers:
• Internet Explorer 7
• Internet Explorer 6
• Firefox 2.0
• Opera 9.5
• Safari
This will require access to a Windows XP/Vista machine and to an OS X
machine, but such access is necessary given that participants will be using a
wide variety of platforms and browsers.

Conclusion
Online survey techniques are mature, and will dramatically simplify the data
collection process, but the technical challenge is significant. Although it may be
possible to rely on volunteer labor (e.g. research assistants) for processing paper
surveys, it is not responsible to do the same for online surveys. At this point, too
much responsibility is concentrated in too few hands in the case of online
surveys, so professional assistance is indicated. This frequently requires a
larger up-front financial commitment to the project, and it also means some
survey goals must be adapted from their original concept in order to be fully
incorporated into an online format. The project will suffer time-delays from
unanticipated changes that might not otherwise occur in the case of a paper-
format survey. This survey methodology is appropriate for highly developed
survey concepts whose designs have already been completed. Finally, YMMV
(your mileage may vary).

Implementing a Psychological Survey using Open Source Software p. 16

	Introduction
	Technologies
	Hardware
	GNU/Linux
	Windows XP
	Cygwin
	Apache 1.3 web server
	PostgreSQL
	Perl 5.8
	Web Browsers

	Features
	Data Tables and Recording Data
	User Identification
	Security and Privacy
	Dynamic Elements
	Loops and Forks/Skip Lists
	Multiple Sessions and Obtaining Access
	"Scales" versus "Pages"
	Appearance: HTML and CSS

	Conclusion

